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MODELING STUDENT KNOWLEDGE WITH
SELF-ORGANIZING FEATURE MAPS

INTRODUCTION

Software for education has become increasingly sophisticated in recent years. The
terms "Intelligent Computer Assisted Instruction" (ICAI) and "Intelligent Tutoring
System" (ITS) are used to describe new educational programs that incorporate the
techniques of artificial intelligence (Sleeman & Brown, 1982; Wenger, 1987; Wxod &
Holt, 1990). A distinction of these programs over previous instructional systems is
that they attempt to explicitly represent knowledge about the domain of instruction and
about the students they are teaching. This concept enables them to reason about the
most effective ways to communicate the concepts of the domain to a given student.

A critical component of an intelligent tutoring system is the student model. In
the student model, a theory of student behavior, the ITS predicts what a student will
do in a given context. This model may include a wide range of information: what
the student knows or doesn't know, any misconceptions ("bugs") the student may
harbor, the student's "cognitive style," degree of forgetfulness, receptivity to advice,
etc.

Current approaches to student modeling arc either ad hoc or make strong assumptions
regarding the student and problem domains, and require substantial expertise to implement.
This paper presents an alternative approach to overcome these limitations. A resulting
model, referred to as a model of the universe of student knowledge (MUSK), captures
the capabilities of students of different mastery levels and also indicates learning paths
from lower to higher levels. An advantage over many other approaches to student
modeling is that MUSK can have an empirical genesis: MUSKs can be derived from
automatic data analysis rather than the labor of human experts.

There is a connection between our MUSKs and models that have been developed
in the psychological literature, particularly the knowledge space theory of Falmagne
and Doignon (Doignon & Falmagne, 1985; Villano & Bloom, 1992). In knowledge
space theory, an area of expertise can be quantized into items, which may be test
questions or equivalence classes of questions. The knowledge state of a student is
defined as the set of items the student can correctly answer. Generally, a small fraction
of the full power set of imaginable states are realizable in the population of students
since, in many domains of knowledge, being able to handle some items implies being
able to handle certain others. For example, in arithmetic, know!ng how to multiply
fractions implies knowing how to multiply integers. Thus, any state containing the
capability to multiply fractions will also contain the capability to multiply integers.
The collection of knowledge states actually realizable by students forms a knowledge
structure. The "structure" is apparent in the lattice of subset relations between the
member knowledge states. Falmagne and associates have explored still stronger mathe-
matical models (c.f. Falmagne, 1989). Discovering a general knowledge structure in
test data is the problem we have addressed.
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Figures 1 through 3 outline our approach. The first step in the development of
a universal student knowledge model is the collection of a problem response database
(Fig. 1). The database includes the responses of a population of students to a number
of standard problems. Both private and governmental institutions already possess such
databases. For example, the New York State Board of Regents has collected the results
of subject-specific comprehensive examinations given to hundreds of thousands of high
school students each year. Similarly, national testing services collect the results of
standardized achievement and aptitude tests.

1. 1

2. 2.

n1. Mt.

Problems
1 2n

110 1
,2 010 0

Figure I
Development of a problem response database.

Each of m students is posed n problems.

The problem response database is used to develop a neural-network-based universal
student knowledge model (Fig. 2). The student model identifies the knowledge states
of the domain and organizes them into a graph that shows their interrelationships. The
graph may or may not conform to representdiions commonly used in the psychometric
or assessment community. The common psychometric assumption is rather strong;
namely that the states are uniformly graded on a single dimension of skill (a Guttman
scale; Lord, 1980; Weiss, 1983). Constraints adopted in knowledge space theory include
the assumption that a null state and a state with complete knowledge exist. A weaker
sort of model constrains states to be closed under union and to be well-graded. While
such assumptions arc not built into our student modeling approach, a MUSK model

2



can readily be converted to a knowledge structure or a knowledge space representation.
To the extent that approaches to the application of student models are based on such
assumptions, however, such a conversion may be desirable.

Questions

1 *2 n

110 1
2 0 0 0

rn o .

Neural Network
Specification ant eanng

Neural Network
Universal Student Model

Figure 2
Developing a neural network implementation of a

MUSK model from a response database.

Once the student model is developed, it provides a concise representation of the
distribution of student capabilities. We foresee the student model as an integral
component of an ITS used to support an instructional module (Fig. 3).

The focus of this paper is on the development of a student model using neural
network learning methods from problem response data. Later, we briefly discuss some
promising ways for an ITS to benefit from such a student model. A more complete
discussion of this latter topic appears in Villano & Bloom, 1992.
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Neural Network

Universal Student Model

Instruction 
Mlodule

ITS

Student

Figure 3
The neural network student module is utilized

by the instruction module of the ITS.

STUDENT MODEL DEVELOPMENT WITH KOHONEN FEATURE MAPS

We have approached the problem of student modeling with a generalization of
Kohonen's self-organizing feature map model (Kohonen, 1984). The feature map is
an unsupervised learning network that preserves topological information about the input
space. The map is conventionally configured with a geometrical arrangement of
units-e.g., a square lattice-aand an interconnectivity pattern that implements a
"winner-take-all" network. Given an input stimulus, one unit (the "winner") is activated:
the winner has the weight vector that is closest (in Euclidean space) to the input
stimulus, which can be either a real-valued or binary vector. The degree of match
mk of a unit k to an input can be computed as the inner product xowk of the input
stimulus vector x (problem responses in our application) and the unit's weight vector
Wk. More simply without requiring normalized weights and inputs, the squared Euclidean
distance (an inverted measure) is often used:
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n

where n is the dimensionality of the input stimulus, xi is the value of the ith input,
and wk. is the weight between the map unit k and the ith input note. Note that a
perfect' match occurs when each component of a unit's weight vector is identical to
the corresponding component of the input vector.

The training process iterates three steps: presenting an input stimulus, determining
the winning unit, and updating feature map weights. For weight modification, we
adopt the following commonly used formula (e.g., Ritter, Martinetz, and Schultcn,
1989):

d 2 (k,c)

Awk(O = r)(t)e 2o 2( (xi( - w (o)

where d(kc) is the distance between units k and the winning unit c on the map (for
example, with a feature map organized as a two-dimensional grid, do is the Euclidean
distance between the coordinates of the two units), and rI and o are parameters, the
learning rate and neighborhood width respectively, that are geometrically reduced as a
function of the training iteration t:

t

T
1(0) = ni

t

Oft) =i ( 13fT

where T is the prespecified number of iterations of the training process, and Tli and
oi (Tl/ and O[) are initial (final) values for Yj and 3.

After training, the feature map is utilized as an on-line classifier. The matching
process of Eq. (1) is used here too: the winning unit identifies a cluster or category
to an input stimulus.



Previous work with Kohonen feature maps has required that complete input vectors
be presented to the network-the input stimulus must specify a value for each dimension.
This constraint is inconvenient for our application: we foresee the MUSK as a predictor
of a student's knowledge state from an incomplete input. Given responses to some
subset of the problems, we need to predict the student's knowledge state.

To accommodate missing information in input stimuli, we note that the matching
operation in Kohonen feature maps involves an independent comparison in each input
dimension. The match can therefore be performed in the subspace defined by the
available problems:

mk = I(xi- wk)2 (2)
i• PcK

where P is the subset of the universal problem set K for which responses xi are
provided.

Partial data is useful for model development as well. In many testing situations,
individual students are given some, possibly randomly-determined, subset of a universal
problem set. (For example, the universal set could contain a number of different
problems for each underlying concept.) The resulting problem response database is thus
a set of vectors in each of which there are several elements that have no value. Due
to the redundancy in the problem set, however, there is sufficient information in the
data to develop an accurate student model. For feature map training with partial data,
we use Eq. (2) for the matching step. Ties for the winner are broken randomly and
weight modifications are limited to the P problem units. For more discussion on
training with partial data, as well as some experimental results, see Samad and Harp
(1992).

Each unit in the trained network represents a cluster of students: a region of
possible input values reflecting statistical regularities in the training data. The
representation is explicit in the weights themselves-the wcight value between an input
unit and a map unit is the prototypical value of the input for the cluster. (With input
values constrained to the 10,1] internal, weight values will also be so constrained. As
noted below, continuous-valued weights are thresholded for a binary interpretation.)

A map unit thus represents a knowledge state and the weights associated with the
unit indicate whether or ,ot a student in that state is capable of correctly answering
the problems. Unlike, say, multilayer perceptron neural networks, Kohonen featurc
maps are not virtually uninterpretable "black boxes."

The perspicuity of representation is a useful feature for this application. It enables
MUSKSs to realize some powerful capabilities:

* After training, once the best matching unit in the problem response subspacc
is determined, predictions for the remaining problcms arc easily produced.
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If unit c has the closest match, and pj is the prediction for problem j (j P),
then:

{j 1 if wje z, 0.5(3Pi = { t0 otherwise (3)

Similarly, the weights indicate the implications of any knowledge state. This
feature provides the model some noise immunity and error correcting ability.
An imperfect match with the winning unit in the space of available problem
responses may indicate careless errors and/or luck guesses.

Knowledge representation in the feature map is localized-individual map
units correspond to different knowledge states. The matching operation is
conducted in parallel over all units. Degrees of match are available for all
knowledge states and these car. serve as "confidence factors" for predictions
associated with particular knowledge states. Thus the predictions from Eq. (3)
would be weighted by m.

A MUSK can be presented as a lattice of the knowledge states in a Hasse diagram
(Trotter, 1983). The graph is completely determined by the subset relation between the
knowledge states, a partial order, and is easily generated once the states have been
identified. A node, Nx, in the MUSK represents a particula, knowledge state X. In
effect, the graph must enforce one constraint: node NA is an ancestor of NB if, and
only if, state A is a supersel of stale B. By convention, no arc is drawn between
two nodes when a third, intermediate, state is properly contained in states of the larger
of them. A simple algorithm generates the graph from the set of states.

Because the graph can be derived from the states, the central problem of our
concern has been the identification of the clusters. Noise and incomplete data prevent
immediate enumeration of the states. The ideal feature map topology should maximize
the likelihood of capturing the correct knowledge states from such data. We currently
adopt a standard feature map topology: a string. The string topology is a reasonable
default since it imposes relatively few constraints-a string network contains the
minimum number of edges which ensures connectedness.

Despite the near-universal reliance on regular networks, feature map training can
be done with arbitrary topologies. Preliminary experiments using a topology that is
isomorphic to the problem domain produced positive results under this assumption
(Samad and Harp, 1992). In this scenario, the network learns an isomorphism, mapping
the nodes of the network to the states of the knowledge space. In other words, the
network classifies the questions, whose properties may be unknown, into the states of
a known knowledge structure.
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EXAMPLE

We discuss next the application of this student model to a particular domain. We
have chosen a domiin that is relatively simple and for which sufficient expertise exists
for determining plausible knowledge states. The expert-synthesized states can then be
used for generating training data, and for comparison with the MUSK deveioped from
the data.

Figure 4 shows a knowledge state graph for fuel management performed by the
navigator of an AC-130H aircraft. This position in the AC-130H (a variant of the
C-130 transport known as a Gunship, and used in Special Operations) is responsible
for inputs to the flight and fuel planning necessary to accomplish the mission. Aircrew
members for this aircraft come from the ranks of experienced C-130 crews. Therefore.
mission fuel planning in general is not a new task. What makes this particular problem
unique is the kinds of mission events and conditions that must be planned for (e.g.,
combat loiter), the kinds of contingencies that must be anticipated, and unplanned
changes in mission conditions that must be solved as part of the planning process.
The knowledge states shown represent some of the competencies needed to prepare
and manage the mission fuel plan for a tactical mission. There arc six primitive
concepts for the domain, listed in increasing complexity:

C C-5. The correction for air density applied to equivalent airspeed. This task
is perform,.d for a give"- temperature and pressure to determine true airspeed
for time/distance/fuel calculations.

C-4. Ai- speed calibration for cruise at 200 knots indicated airspeed. This
task may be represented b, the problem statement: For a given cruise altitude
and cruise indicated airspeed. find the calibrated airspeed at the indicated
airspeed.

C-3. Cruise altitude determination for a given set of corJitions. For a
given gross aircraft weight, cruis." power setting, temperature, and non-zero
dra,. index, find the recommended or most efficient cruise altitude.

C-2. Calculation of maximum endurance calibrated airspeed and fuel flow
for a given "holding." This task may be represented by th~e problem statement:
For a given pressure altitude, beginning holding weight, temperature, drag
index, holding time, number of operational engines, and type of bleed, find
the best average calibrated airspeed to be flown to minimize the amount of
fuel used.

* C-1. Calculation of combat loiter time on statior for a given amount of
fuel. For a given pressure altitude, beginning loiter gross weight, aircraft
configuration, fuel amount, and true airspeed, calculate the combat loiter time.

* C-0. Calculation of necessary fuel requirements for any or all segments of
a given tactical mission. This task may be represented by the following
problem statement: Given a flight plan for a tactical mission, including

8



pressure altitudes, true airspeeds, take-off gross weight, temperature, drag
index, winds, and other conditions that may be dictated by the mission,
calculate the elapsed time and the amount of fuel needed for any or all flight
segment.

5 716

8 C49 C

Figure 4
The correct MUSK model for fuel management

performed by the navigator of an AC-130H aircraft.

As shown in Figure 4, we posit additional states which represent unions of these
concepts. For example, state 7 represents a skill level in which the student is capable
of both air density correction and air speed calibration (but not tasks involving
higher-level concepts).

9



Based on Figure 4, a problem mastery matrix was generated (Table 1). For each
knowledge state, the mastery matrix indicates which of the problems in the problem
set a student in that state is capable of correctly answering. We assumed 25 problems
in the set, and the entries are consistent with Figure 4. Thus state 9 represents
complete ignorance, state 0 represents full understanding of the domain, and the mastery
vector for a knowledge state is a superset of mastery vectors for all child states. In
all our experiments, we assumed a population of 1O0 students uniformly distributed
over the 10 states. Training sets thus consisted of 10(X) 25-dimensional input vectors.

Table 1. Problem Mastery Matrix for AC-130H
Fuel Management Knowledge States.

Knowledge
State Problem Responses

0 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 I 1 1 I

2 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1

3 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1

4 0 0 1 0 0 1 1 0 1 0 0 0 0 1 01 1 0 0 1 0 1 1 1 1

5 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1

6 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 l 0 1

7 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 I 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: Correct (I entries) and incorrect (0 entries) responses to each of 25 problems for students in
knowledge states 0 through 9 indicated.

EXPERIMENTAL RESULTS

In a large number of experiments, we have been able to reliably achieve correct
clustering from problem response data generated from Table 1. Experiments have been
conducted with varying noise levels, and various choices of learning algorithm parameters.
With significant noise in the training data, the final values of network weights are not
zero or one. In these cases, we threshold the weights at 0.5 to generate binary response
vectors for all knowledge states. Some anecdotal evidence indicates that the proximity
to 0.5 is a monotonic function of the noise probability for a problem; we have yet
to systematically investigate this hypothesis.

We have been impressed by the robustness of the approach, It displays noise
tolerance, and the learning parameter values are not critica?. To assess robustness

10



quantitatively, we have conducted a large number of experiments with varying noise
and parameter values. In each experiment, a number of runs were performed with
different random number generator seeds. The proportion of runs in each experiment
that resulted in the correct (i.e., perfect) student model were computed. This is a
severe criterion: an incorrect prediction of one response in one state disqualifies the
trained feature map.

Noise in the context of problem response data consists of careless errors (incorrect
answers where the mastery matrix would predict correct ones) and lucky guesses (the
converse). Figure 5 shows modeling accuracy as a function of noise. The noise factor
is the probability for both careless errors and lucky guesses on any given question.
The same probability of error was applied to all problem responses. With up to 10%
noise, there is generally a better than 90% chance of obtaining the correct model.

data from nOnp35.fout
100

90

s0

S70
Q)

" 50
0
(U)

S40a)

ULi

S30

20

i0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Noise Factor

Figure 5
Likelihood of achieving a perfect model as a function of noise (careless errors

and lucky guesses) in the response data. Learning algorithm parameters
were as follows: Ti1 = 0.2, Ylf = 0.1, aj = 5, of = 0.05, T = 10000.

Each point in the graph represents an average over 50 runs.

11



Wc observed an interesting, and somewhat paradoxical, phenomenon with very low
learning rates. Figures 6a and 6b show performance as a function of noise for different
parameter values. Performance on noise-free data is significantly poorer. Examination
of the networks in these cases suggests a possible resolution. When incorrect models
were produced, one unit of the feature map was not activated: it was not a winning
unit for any training stimulus. Figure 7a schematically depicts the situation. One
unit lies closest to two stimuli. With low learning rates and final neighborhood widths
significantly less than unity, the unactivated unit will not be the closest match for
either of the stimuli. Figure 7a thus represents a local minimum.

With noise present in the training data, however, the map of Figure 7 a is less
likely to be a stable final configuration. The variety of stimuli result in a greater
likelihood of activating all units. The global minimum solution (Fig. 7b) can therehy
be achieved. Note that the feature map of Figure 7b is stable for both the noise-frec
and the depicted noisy training spaces. The map of Figure 7a, however, is only stable
for the noise-free data.

In general, the probabilities of careless errors and lucky guesses may differ.
Depending on the construction of the test and student instructions, one or the other
will be more likely. For example, lucky guesses are considerably more likely than
careless errors in multiple-choice tests. For "fill-in-the-blank" problems, on the other
hand, the converse is true. Figure 8 shows how model development is affected by
independent careless error and lucky guess probabilities.

The approach is also reasonably insensitive to parameter selections. We cxpendcd
little effort in attempting to determine optimal values for the learning algorithm
parameters. Subsequent experiments confirmed that the ease with which we found
appropriate values was a consequence of the parameter robustness of the model. Some
of these experiments are summarized in Figures 9, 10, and 11. In each case two
parameters are varied over a wide range-up to two orders of magnitude-and the
frequency with which a perfect model was obtained is shown. Over a broad range
of parameters, the correct model is realized with near certainty.

DETERMINING THE CORRECT SIZE FOR THE FEATURE MAP

As with many other neural network architectures, feature map application consists
of more than network training. Before the learning algorithm can be executed, the
network structure must be determined. The availability of an algorithm for generating
the student model structure from identified clusters allows us to use a string topology
for the map. There remains the problem of determining the size of the network: the
number of feature map units that constitute the string. The synthetic nature of our
application specifies a unique correct solution. In practice, the number of states
underlying a problem response database is typically not well-defined. Expert assessments
of this quantity can differ substantially. Kambouri et al. (1991) observed an order of
magnitude variation in expert estimates of the number of states in a high-school
mathematics domain. We have investigated two approaches to the problem of estimating
the number of states.

12
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Figure 6b

Likelihood of achieving a perfect model is a non-monotonic function of noise
in some parameter regimes. Learning algorithm parameters were as follows:
For (a), i1| = 1.0, rlf -- 0.01, oj = 10, or 0.1, T = 10000; For (b), rji - 0.05,
ll= 0.01, oi 10, ot" = 0.1, T = 10000. Each point in graph (a) is an average
over at least 20 runs; each point in graph (b) is an averge over 50 runs.
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x

Figure 7a Figure 7b

Noise in training data for unsupervised learning can help avoid local minima.
In (a), the "X" represent (noise-free) training stimuli. In (b), noisy training

stimuli are generated from regions of the input space, not points. The trained
map configuration in (a) is a local minimum for noise-free data, but is not a

stable point with noisy data. The trained map configuration in (b) is a
stable global minimum for both noise-free and noisy data.

Data from c_1_2.fout

Percent correct Models
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0.0-- ----- N 0.2
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Figure 8
Likelihood of achieving the perfect model as a function of two independent

noise parameters: probabilities for careless errors and lucky guesses. Learning
algorithm parameters were as follows: qi = 0.2, rjf = 0.1, oi = 5, or = 0.05,

T = 10000. Each point in the graph represents an average over 50 runs.
Contour lines are at 23.3%, 38.6%, 54%, 68.3%, and 84.6%.
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Figure 9
Likelihood of achieving the perfect model as a function of initial (ei or qi) and final

(ef or vif) learning rate parameters. Other parameters were as follows: oi = 10,
or = 0.01, T = 10000, 10% noise. Each point in the graph represents an average

over 20 runs. Contour lines are at 16.7%, 33.4%, 50%, 66.7%, and 83.4%.
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Figure 10
Likelihood of achieving the perfect model as a function of initial (ei for i1i) and final

(ef or rqf) learning rate parameters. Other parameters were as follows: oj = 5,
Of = 0.05, T = 10000, no noise. Each point in the graph represents an average

over 25 runs. Contour lines are at 16.7%, 33.4%, 50%, 66.7%, and 83.4%.
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Figure 11
Likelihood of achieving the perfect model as a function of initial (si or oi) and final
(sf or or) neighborhood parameters. Other paramý ers were as follows: ill = 0.2,
Ylf = 0.1, T = 10000, no noise. Each point in the graph represents an average over

25 runs. Contour lines are at 16.7%, 33.4%, 50%, 66.7%, and 83.4%.

An obvious measure of clustering accuracy is the rms error e between stimuli and
weight vectors of corresponding winning map units which by itself is inadequate: it
is typically monotonic with increasing units. In an approach similar to that used for
fitting data smoothing models, we penalize this measure with a complexity term, the
number of map units m. The combined minimization criterion that is used to determine
the optimal number of map units n* is:

n* = arg min J(en)

J(e,n) = ale + a2n

The ai are adjustable coefficients. With a penalty on larger networks, this approach
is effective. Figure 12 shows the result of evaluating the cost function J over a range
of n. The minimum is obtained for n=1O. When n is small, the result is not critically
contingent on values of the coefficients. The correct minimum is obtained for all
a,, a2 such that 26 s al/a2 < 250, almost an order of magnitude range in ratios. For
larger n, another constraint applies: the weight vectors of the learned network should
all be unique. In our case, for n=13, three pairs of duplicate weight vectors were
observed. The ten distinct weight vectors were the correct representations for the ten
knowledge states. The search for optimal network size need not be exhaustive.
Efficiency is important for knowledge spaces with large numbers of states. We have
used a line search algorithm (golden section) to rapidly converge on appropriate
topologies.
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Figure 12
Values of the cost function J as a function of network size. The minimum of J is

encountered for the correct number of feature map units: 10. Parameters as
follows: qi = 0.05, rif = 0.01, ai = 10,of = 0.1, T = 10000, noise factor = 10%.

This approach performs reliably for small to moderate domains (less than 50 states).
As the number of states grows larger, however, local minima associated with the penalty
function J can confound the simple line search technique. This problem is illustrated
in a randomly generated knowledge space of 50 states. The example presumed 10
underlying items, and two questions on each, so each map unit was of dimension 20.
Feature maps of varying lengths were trained on a randomly generated database of
1000 students; student responses included a "lucky guess" rate of 0.2. Networks were
given 10,000 training trials. With coefficients a1 = 0.99 and a2 = 0.01, the line search
algorithm sometimes settles on a near optimal string length of 51 (see Figure 13).
However, the function J offers an even lower point at length 70, which is also a
plausible (but incorrect) solution.

An alternative approach follows from considering what happens when the size of
the network is much greater than the number of states in the underlying knowledge
structure. After training, a large number of units are never "winners"; the remaining
units, each of which is optimal for at least one student, provide a good estimate of
the number of states in the knowledge structure. Indeed, these winning units can be
isolated to recover the elements of the knowledge structure. Thus, to simultaneously
estimate the size of the space and extract its elements, it suffices to incrementally
increase the network size until further increases cease to increase the number of
activated units. In the example of Figure 13, the asymptote of the upper curve is
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precisely 50. This approach has successfully been applied to randomly generated

knowledge structures of sizes 50, 100, 200, and 400 elements.
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Figure 13
Penalized error function (right axis) and activated units (left axis) as a function

of the number of the map units. The networks were trained on a synthetic
knowledge structure of 50 randomly generated states. Noise factor (lucky guess
rate) = 20%. Other parameters: i'b = 0.2, ifi = 0.1, oi = 5, of = 0.05, T = 10000.

APPLICATIONS OF MUSK

As noted earlier, our approach to student modeling can be placed within the
framework of Knowledge Space Theory (KST) and thus, ultimately imbedded in an
Intelligent Tutoring System (Villano, 1992; Villano & Bloom, 1992). The student
model in an ITS provides support for the following functions: adaptively assessing
the student's mastery of the material, charting the student's progress through the
curriculum, selecting the appropriate level of hinting and explanation, and facilitating
student feedback. In addition to dynamically adapting to the student's responses during
an interaction with the ITS, the student model should also utilize prior assessment data
obtained from a population of students as illustrated by the MUSK approach.

Several factors contribute to uncertainty in student modeling such as careless errors
and lucky guesses in the student's responses, changes in the student knowledge due
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to learning and foigetting, and patterns of student responses unanticipated by the
designer of the student model. The motivation for a probabilistic student model stems
from the need to represent this uncertainty regarding the estimate of the student's
knowledge. A promising approach to the development of a probabilistic student model
is to incorporate probdbility measures in the MUSK approach.

In KST, stochastic knowledge a.sessment routines have been developed in which
uncertainty regarding the student's knowledge state is represented by a probability
distribution on the states (Villano et al., 1989; Falmagne & Doignon, 1988; Villano,
1991). The assessment routine updates the probability distribution on the states to be
consistent with the student's responses to a carefully chosen sequence of problems.
The probability of a correct response to a problem can also be computed from the
distribution on the states. In addition, lucky guess and careless error probabilities can
also be estimated easily, given the MUSK model and the problem response database.
Below, we briefly summarize some potential applications of our probabilistic student
model concept within an Intelligent Tutoring System.

Problem Selection. For an ITS to be adaptive, it must be capable of determining
the next "best" problem to pose to the student based on a dynamic student model. In
KST, one method for selecting the most "informative" problem is available that can
straightforwardly be applied to MUSK models: choose the problem with the least
predictable response (Falmagne & Doignon, 1988; Villano, 1991). For the half-split
selection rule, we choose the problem whose probability of being answered correctly,
p(q) is closest to .5. The reasoning is as follows. If p(a) = .85, then problem a
would not be very informative because it is almost certain the student would respond
correctly. If p(d) = .1, then problem d would not be informative because we are
fairly certain (1-.1 .9) that the student would fail this problem. If p(c) = .5, then
problem c would be the most informative problem to ask of these three because there
would be an equal chance of the student passing or failing problem c. Problem c is
thus the problem for which our estimate of how the student will respond is the most
uncertain.

Curriculum and Advancement. A MUSK model represents various learning paths
through a curriculum, and can thereby accommodate different instructional strategies
of educators and different learning styles on the part of students. The learning paths
(gradations) may be used to guide the progression of the student through the curriculum.
In a well-graded knowledge space, the next lesson to teach is the one tested by the
next problem in the learning path. In the event that there is more than one path to
follow from the current knowledge state, you may choose the path to the easiest
problem (the problem with the highest probability of being answered correctly), or the
problem along the most traveled (or most probable) learning path. The student would
be expected to master the current problem in the learning path before moving on to
the next problem. Mastery of a "problem" could be defined by a score on equivalence
class of test problems or task.

Hint Level. The content and nature of the hint or explanation in an ITS relics
upon the student model's representation of the student's level of mastery of the material.
More advanced students may be given terse explanations, whereas novice students could
be given more elaborate guidance. The level of mastery is readily available in a
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MUSK model. A measure of problem difficulty that can be useful in this context is
the "height" of a problem as used in KST. The height can be defined by the minimal
number of problems which must be solved before a particular problem, and can be
used to determine the level of hinting. A problem parameter such as the probability
of a careless error may also influence hinting. For example, if a problem had a
relatively high probability of a careless error, a hint might warn the student to take
extra time to check and confirm the answer to the problem.

Student Feedback. An inspectable, detailed representation of the learner's mastery
of the material can provide feedback regarding the student's most recent accomplishments
and most pressing weaknesses. With a MUSK model, rather than reporting a single
score (i.e., ability = 95%), we can be much more specific and indicate the most
advanced problem that has been mastered as well as a lis' of the missed problems
and/or future problems to be mastered. We would prefer not to lose the distinction
between a student who can answer many simple problems versus one who can answer
a few difficult problems. A graphical representation of the knowledge structure may
also be used as an inspectable student model indicating the student's position in the
curriculum.

CONCLUSIONS

The MUSK approach to student model generation provides a novel approach to
take advantage of existing databases. Raw data can be processed by the self organizing
feature map, yielding a characterization of the knowledge structure, which can be used
to classify students in the ITS. With the synthetic problem examined, it has proven
to be robust and easy to apply. There are open issues as to how the technique will
perform with raw data representing very large knowledge structures, and how best to
interface a MUSK to an ITS. To explore the former question, we are c-irrently
examining a real test database from the New York Regents examination in mathematics
containing results from 60,000 students.
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PREFACE

The mission of the Intelligent Training Branch, Technical Training Research
Division, Human Resources Directorate, Armstrong Laboratory (AL/HRTI) is to
design, develop, and evaluate the application of artificial intelligence (AI)
technologies to computer-assisted training systems. The current effort was
undertaken as part of HRTI's research on intelligent tutoring systems (ITS) and ITS
development tools. The work was accomplished under work unit 1121-09-81,
Application of Artuicial Neural Networks to Modeling Student Performance. The
proposal for this research was solicited using a Broad Agency Announcement.
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